precision n. 精密,精確性;嚴(yán)格;精密度;【修辭學(xué)】精確。 arms of precision 裝有瞄準(zhǔn)儀的槍炮。 adj. 精確的,精密的。 precision apparatus 精密儀器。 a precision balance 精密天平。 a precision fire 準(zhǔn)確射擊。
The precise integration method of differential equation was presented by using 2 algorithm , its numerical precision was also analyzed 運(yùn)用指數(shù)矩陣的2 ~ n類算法,構(gòu)造了微分方程的精細(xì)積分算法,并分析了計(jì)算精度。
The results show that , when the number of grid in numerical region is fewer , the numerical precision in iso - volumetric grid is higher than that in iso - spacing grid 結(jié)果表明,當(dāng)網(wǎng)格節(jié)點(diǎn)數(shù)較少時(shí),等體積網(wǎng)格比等距網(wǎng)格具有更高的計(jì)算精度。
The impaction of numerical precision on the accuracy of simulated flow field is checked . curving level of throat wall arc mesh is compared to see the effect on flow loss 并比較了數(shù)值精度對(duì)流場(chǎng)模擬精度的影響和喉道壁面網(wǎng)格的圓弧度處理對(duì)流動(dòng)損失的影響。
Numerical results all indicate that the two axisymmetric finite elements exhibit better numerical precision , excellent performance at the nearly incompressible limit and distortions of the element geometry , and element performances are improved after optimization . the layout of this thesis is follows 具體表現(xiàn)是:對(duì)畸變網(wǎng)格有很好的適應(yīng)性;計(jì)算可靠,不發(fā)生poissonlocking現(xiàn)象;對(duì)雙線性等參元的粗網(wǎng)格精度有很好的改善。
The concept of row ( column ) transposed matrix and row ( column ) symmetric matrix is given , their basic property is studied , and the formula for full rank factorization and orthogonal diagonal factorization of row ( column ) symmetric matrix are presented , which can reduce dramatically the amount of calculation and save the cpu time and memory without loss of any numerical precision 摘要提出了行(列)轉(zhuǎn)置矩陣與行(列)對(duì)稱矩陣的概念,研究了其性質(zhì),給出了行(列)對(duì)稱矩陣的滿秩分解和正交時(shí)角分解公式,極大地減少了行(列)對(duì)稱矩陣的滿秩分解和正交對(duì)角分解的計(jì)算量與存儲(chǔ)量,且沒有降低數(shù)值精度。
Through the research in this thesis , following conclusion can be drew : on the condition of nearly incompressible limit , the n - s equations can be recovered by the lb method ' s models with 2 - order numerical precision ; computational efficiency in simulating flow fields can be improved effectively by perfection of the lb method ' s theory ; development of parallel computation can contribute to the simulation of large - scale flow field with complex geometry 通過本文的研究,可得出如下結(jié)論: lb方法的模型在接近不可壓縮的條件下能夠以二階精度逼近n - s方程; lb方法理論的完善能夠有效地提高流場(chǎng)模擬的計(jì)算效率;并行計(jì)算的發(fā)展有利于lb方法模擬大尺度的復(fù)雜流場(chǎng)。
The astringency , error and stability of the numerical method are researched . zero matrix method , constant matrix method , and jacobian matrix method are constructed in order to improve numerical precision and efficiency . the steps for calculating matrix exponential function using pade approach method are given out 研究了所提西安理工大學(xué)博士學(xué)位論文數(shù)值計(jì)算方法的誤差、穩(wěn)定性、收斂性等數(shù)學(xué)性質(zhì),在計(jì)算精度和計(jì)算效率兩方面提出了一些改進(jìn)措施,構(gòu)造了零矩陣法、常數(shù)矩陣法、雅可比矩陣法等計(jì)算格式,給出了利川pade逼近計(jì)算矩陣指數(shù)函數(shù)的求解步驟。
Due to the difference of material characters and mechanics performance between concrete structures and soils , it is necessary to pay great attention to model the interface element , simulate the soil behavior and the optimization of the finite elements to satisfy the numerical precision and the compatibility relation of the whole project 由于結(jié)構(gòu)與土的材料特性,受力性能等方面的差異,為了滿足有限元計(jì)算精度和效率的要求,合理的反映結(jié)構(gòu)與土體之間的位移協(xié)調(diào),需要在結(jié)構(gòu)與土體之間設(shè)置恰當(dāng)?shù)慕佑|面單元,正確的模擬土的本構(gòu)關(guān)系,并盡可能地簡(jiǎn)化結(jié)構(gòu)的數(shù)值模型。